Close Menu
Arunangshu Das Blog
  • Tools and Extensions
    • Automation Tools
    • Developer Tools
    • Website Tools
    • SEO Tools
  • Software Development
    • Frontend Development
    • Backend Development
    • DevOps
    • Adaptive Software Development
  • Cloud Computing
    • Cloud Cost & FinOps
    • AI & Cloud Innovation
    • Serverless & Edge
    • Cloud Security & Zero Trust
  • Industry Insights
    • Trends and News
    • Case Studies
    • Future Technology
  • Tech for Business
    • Business Automation
    • Revenue Growth
    • SaaS Solutions
    • Product Strategy
    • Cybersecurity Essentials
  • AI
    • Machine Learning
    • Deep Learning
    • NLP
    • LLM
  • Expert Interviews
    • Software Developer Interview Questions
    • Devops Interview Questions
    • AI Interview Questions

Subscribe to Updates

Subscribe to our newsletter for updates, insights, tips, and exclusive content!

What's Hot

How Large Language Models Work?

March 28, 2024

If You Can Answer These 7 Questions Correctly You’re Decent at JavaScript

February 12, 2025

Mastering Service-to-Service Communication in Microservices: Boost Efficiency, Resilience, and Scalability

October 7, 2024
X (Twitter) Instagram LinkedIn
Arunangshu Das Blog Saturday, May 10
  • Article
  • Contact Me
  • Newsletter
Facebook X (Twitter) Instagram LinkedIn RSS
Subscribe
  • Tools and Extensions
    • Automation Tools
    • Developer Tools
    • Website Tools
    • SEO Tools
  • Software Development
    • Frontend Development
    • Backend Development
    • DevOps
    • Adaptive Software Development
  • Cloud Computing
    • Cloud Cost & FinOps
    • AI & Cloud Innovation
    • Serverless & Edge
    • Cloud Security & Zero Trust
  • Industry Insights
    • Trends and News
    • Case Studies
    • Future Technology
  • Tech for Business
    • Business Automation
    • Revenue Growth
    • SaaS Solutions
    • Product Strategy
    • Cybersecurity Essentials
  • AI
    • Machine Learning
    • Deep Learning
    • NLP
    • LLM
  • Expert Interviews
    • Software Developer Interview Questions
    • Devops Interview Questions
    • AI Interview Questions
Arunangshu Das Blog
Home»Software Development»Backend Development»4 Common Mistakes in Database Selection for Trading
Backend Development

4 Common Mistakes in Database Selection for Trading

Arunangshu DasBy Arunangshu DasFebruary 21, 2025Updated:February 26, 2025No Comments4 Mins Read

Choosing the right database for a trading application is a critical decision that can significantly impact performance, reliability, and scalability. Traders and developers often focus on execution strategies, backtesting models, or real-time analytics but overlook the database that powers these systems. A poor database choice can lead to slow queries, data inconsistencies, or even system failures during peak trading hours.

1. Ignoring Latency Requirements

Speed is everything in trading. Whether you’re handling order execution, market data storage, or real-time analytics, your database must be optimized for low-latency reads and writes. One of the biggest mistakes is choosing a traditional relational database without considering its impact on performance.

For example, PostgreSQL and MySQL, while powerful, may struggle with millisecond-level data ingestion and retrieval. High-frequency trading (HFT) or algorithmic trading systems require databases like TimescaleDB, ClickHouse, or in-memory solutions such as Redis. If you fail to account for latency from the start, your trades might execute too late, resulting in significant losses.

2. Overlooking Scalability Needs

Many trading platforms start small but eventually need to handle massive amounts of data. A common mistake is selecting a database that cannot scale efficiently. Traditional relational databases may work fine initially, but as trade volumes grow, the system can bottleneck, leading to slower performance and downtime.

NoSQL databases like MongoDB or event-driven solutions like Apache Kafka can be better choices for handling streaming data at scale. Additionally, partitioning and sharding strategies should be considered early in the design phase to avoid expensive migrations later.

3. Choosing the Wrong Data Model

Not all databases are designed for the same type of workload. Trading applications involve structured and unstructured data, including order books, price tick data, user transactions, and risk management metrics. Choosing a database without considering the data model can lead to inefficiencies.

For example, using a document-based NoSQL database for structured trading data that requires complex relationships (such as order execution history) may lead to performance issues. On the other hand, using a relational database for real-time event processing may cause unnecessary overhead. A hybrid approach—using PostgreSQL for transactional data and a time-series database for market data—often yields better results.

4. Neglecting Data Integrity and Compliance

Trading applications must adhere to strict financial regulations, requiring robust security, ACID compliance, and audit trails. Some developers prioritize speed and scalability while neglecting these aspects, which can lead to regulatory violations or security breaches.

For instance, using an eventually consistent NoSQL database for transaction logs might not be ideal if the data must be accurate at all times. In contrast, ACID-compliant databases like PostgreSQL, SQL Server, or Oracle ensure transactional integrity. Additionally, proper encryption, access control, and backup strategies should be in place to meet compliance standards.

Final Thoughts

Selecting the right database for a trading system is not just about performance—it’s about balancing speed, scalability, data integrity, and regulatory compliance. Ignoring these factors can lead to costly mistakes that affect both trading outcomes and business operations.

You may also like:

1) 5 Common Mistakes in Backend Optimization

2) 7 Tips for Boosting Your API Performance

3) How to Identify Bottlenecks in Your Backend

4) 8 Tools for Developing Scalable Backend Solutions

5) 5 Key Components of a Scalable Backend System

6) 6 Common Mistakes in Backend Architecture Design

7) 7 Essential Tips for Scalable Backend Architecture

8) Token-Based Authentication: Choosing Between JWT and Paseto for Modern Applications

9) API Rate Limiting and Abuse Prevention Strategies in Node.js for High-Traffic APIs

10) Can You Answer This Senior-Level JavaScript Promise Interview Question?

11) 5 Reasons JWT May Not Be the Best Choice

12) 7 Productivity Hacks I Stole From a Principal Software Engineer

13) 7 Common Mistakes in package.json Configuration

Read more blogs from Here

Share your experiences in the comments, and let’s discuss how to tackle them!

Follow me on Linkedin

Related Posts

7 Common CORS Errors and How to Fix Them

February 26, 2025

The Significance of HTTP Methods in Modern APIs

February 25, 2025

7 Advantages of Using GraphQL Over REST

February 23, 2025
Leave A Reply Cancel Reply

Top Posts

Transforming Your API: From Slow to Fast

February 8, 2025

Top Shortcuts to Speed Up Your Workflow in Chrome DevTools

December 18, 2024

Data Augmentation

May 9, 2024

Named Entity Recognition (NER) in Natural Language Processing (NLP)

May 15, 2024
Don't Miss

Securing Node.js WebSockets: Prevention of DDoS and Bruteforce Attacks

December 23, 20244 Mins Read

WebSockets have become a pivotal part of modern real-time applications, enabling full-duplex communication between clients…

How Machine Learning Works?

March 28, 2024

7 Essential On-Page SEO Techniques for 2025

February 18, 2025

10 Common RESTful API Mistakes to Avoid

February 23, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • LinkedIn

Subscribe to Updates

Subscribe to our newsletter for updates, insights, and exclusive content every week!

About Us

I am Arunangshu Das, a Software Developer passionate about creating efficient, scalable applications. With expertise in various programming languages and frameworks, I enjoy solving complex problems, optimizing performance, and contributing to innovative projects that drive technological advancement.

Facebook X (Twitter) Instagram LinkedIn RSS
Don't Miss

VGG- Architecture

April 15, 2024

6 Benefits of Using Generative AI in Your Projects

February 13, 2025

7 Essential Tips for Fine-Tuning AI Models

February 9, 2025
Most Popular

Polynomial Regression

March 31, 2024

Top 10 Technologies for Backend-Frontend Integration

February 21, 2025

How AI Models Work: A Beginner’s Guide to Neural Networks and Deep Learning

February 8, 2025
Arunangshu Das Blog
  • About Me
  • Contact Me
  • Privacy Policy
  • Terms & Conditions
  • Disclaimer
  • Post
  • Gallery
  • Service
  • Portfolio
© 2025 Arunangshu Das. Designed by Arunangshu Das.

Type above and press Enter to search. Press Esc to cancel.